Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Adv Drug Deliv Rev ; 201: 115010, 2023 10.
Article in English | MEDLINE | ID: mdl-37454931

ABSTRACT

The primary impetus of therapeutic cell encapsulation in the past several decades has been to broaden the options for donor cell sources by countering against immune-mediated rejection. However, another significant advantage of encapsulation is to provide donor cells with physiologically relevant cues that become compromised in disease. The advances in biomaterial design have led to the fundamental insight that cells sense and respond to various signals encoded in materials, ranging from biochemical to mechanical cues. The biomaterial design for cell encapsulation is becoming more sophisticated in controlling specific aspects of cellular phenotypes and more precise down to the single cell level. This recent progress offers a paradigm shift by designing single cell-encapsulating materials with predefined cues to precisely control donor cells after transplantation.


Subject(s)
Biocompatible Materials , Cell Encapsulation , Humans , Biology
2.
Adv Sci (Weinh) ; 10(3): e2206014, 2023 01.
Article in English | MEDLINE | ID: mdl-36453581

ABSTRACT

Various signals in tissue microenvironments are often unevenly distributed around cells. Cellular responses to asymmetric cell-matrix adhesion in a 3D space remain generally unclear and are to be studied at the single-cell resolution. Here, the authors developed a droplet-based microfluidic approach to manufacture a pure population of single cells in a microscale layer of compartmentalized 3D hydrogel matrices with a tunable spatial presentation of ligands at the subcellular level. Cells elongate with an asymmetric presentation of the integrin adhesion ligand Arg-Gly-Asp (RGD), while cells expand isotropically with a symmetric presentation of RGD. Membrane tension is higher on the side of single cells interacting with RGD than on the side without RGD. Finite element analysis shows that a non-uniform isotropic cell volume expansion model is sufficient to recapitulate the experimental results. At a longer timescale, asymmetric ligand presentation commits mesenchymal stem cells to the osteogenic lineage. Cdc42 is an essential mediator of cell polarization and lineage specification in response to asymmetric cell-matrix adhesion. This study highlights the utility of precisely controlling 3D ligand presentation around single cells to direct cell polarity for regenerative engineering and medicine.


Subject(s)
Cell Encapsulation , Cell Polarity , Ligands , Hydrogels , Oligopeptides
3.
Methods Mol Biol ; 2375: 125-139, 2022.
Article in English | MEDLINE | ID: mdl-34591304

ABSTRACT

Silk fibroin (SF) is a natural well-known biomaterial that has widely been explored for various tissue engineering applications with great success. Herein, we describe the methodology for fabricating two different types of tubular silk scaffolds aimed for vascular grafting. The first method emphasizes the use of very thin (10-15µm) silk films with unidirectional longitudinal micro-patterns, followed by their sequential rolling, which results in a multilayered tubular graft mimicking native-like cellular composition. The second method describes the fabrication of a bi-layered tubular scaffold comprising of a highly porous inner layer covered with an outer nanofibrous electrospun layer.


Subject(s)
Morus , Fibroins , Silk , Tissue Engineering , Tissue Scaffolds
4.
Acta Biomater ; 135: 126-138, 2021 11.
Article in English | MEDLINE | ID: mdl-34496284

ABSTRACT

Cardiovascular disease is the leading cause of death worldwide, often associated with coronary artery occlusion. A common intervention for arterial blockage utilizes a vascular graft to bypass the diseased artery and restore downstream blood flow; however, current clinical options exhibit high long-term failure rates. Our goal was to develop an off-the-shelf tissue-engineered vascular graft capable of delivering a biological payload based on the monocyte recruitment factor C-C motif chemokine ligand 2 (CCL2) to induce remodeling. Bi-layered silk scaffolds consisting of an inner porous and outer electrospun layer were fabricated using a custom blend of Antherea Assama and Bombyx Mori silk (lyogel). Lyogel silk scaffolds alone (LG), and lyogel silk scaffolds containing microparticles (LGMP) were tested. The microparticles (MPs) were loaded with either CCL2 (LGMP+) or water (LGMP-). Scaffolds were implanted as abdominal aortic interposition grafts in Lewis rats for 1 and 8 weeks. 1-week implants exhibited patency rates of 50% (7/14), 100% (10/10), and 100% (5/5) in the LGMP-, LGMP+, and LG groups, respectively. The significantly higher patency rate for the LGMP+ group compared to the LGMP- group (p = 0.0188) suggests that CCL2 can prevent acute occlusion. Immunostaining of the explants revealed a significantly higher density of macrophages (CD68+ cells) within the outer vs. inner layer of LGMP- and LGMP+ constructs but not in LG constructs. After 8 weeks, there were no significant differences in patency rates between groups. All patent scaffolds at 8 weeks showed signs of remodeling; however, stenosis was observed within the majority of explants. This study demonstrated the successful fabrication of a custom blended silk scaffold functionalized with cell-mimicking microparticles to facilitate controlled delivery of a biological payload improving their in vivo performance. STATEMENT OF SIGNIFICANCE: This study outlines the development of a custom blended silk-based tissue-engineered vascular graft (TEVG) for use in arterial bypass or replacement surgery. A custom mixture of silk was formulated to improve biocompatibility and cellular binding to the tubular scaffold. Many current approaches to TEVGs include cells that encourage graft cellularization and remodeling; however, our technology incorporates a microparticle based delivery platform capable of delivering bioactive molecules that can mimic the function of seeded cells. In this study, we load the TEVGs with microparticles containing a monocyte attractant and demonstrate improved performance in terms of unobstructed blood flow versus blank microparticles. The acellular nature of this technology potentially reduces risk, increases reproducibility, and results in a more cost-effective graft when compared to cell-based options.


Subject(s)
Blood Vessel Prosthesis , Silk , Animals , Chemokine CCL2 , Chemokines , Ligands , Rats , Rats, Inbred Lew , Reproducibility of Results , Tissue Engineering , Tissue Scaffolds , Vascular Patency
5.
Acta Biomater ; 134: 79-106, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34384912

ABSTRACT

Vascular tissue engineering is a rapidly growing field of regenerative medicine, which strives to find innovative solutions for vascular reconstruction. Considering the limited success of synthetic grafts, research impetus in the field is now shifted towards finding biologically active vascular substitutes bestowing in situ growth potential. In this regard, silk biomaterials have shown remarkable potential owing to their favorable inherent biological and mechanical properties. This review provides a comprehensive overview of the progressive development of silk-based small diameter (<6 mm) tissue-engineered vascular grafts (TEVGs), emphasizing their pre-clinical implications. Herein, we first discuss the molecular structure of various mulberry and non-mulberry silkworm silk and identify their favorable properties at the onset of vascular regeneration. The emergence of various state-of-the-art fabrication methodologies for the advancement of silk TEVGs is rationally appraised in terms of their in vivo performance considering the following parameters: ease of handling, long-term patency, resistance to acute thrombosis, stenosis and aneurysm formation, immune reaction, neo-tissue formation, and overall remodeling. Finally, we provide an update on the pre-clinical status of silk-based TEVGs, followed by current challenges and future prospects. STATEMENT OF SIGNIFICANCE: Limited availability of healthy autologous blood vessels to replace their diseased counterpart is concerning and demands other artificial substitutes. Currently available synthetic grafts are not suitable for small diameter blood vessels owing to frequent blockage. Tissue-engineered biological grafts tend to integrate well with the native tissue via remodeling and have lately witnessed remarkable success. Silk fibroin is a natural biomaterial, which has long been used as medical sutures. This review aims to identify several favorable properties of silk enabling vascular regeneration. Furthermore, various methodologies to fabricate tubular grafts are discussed and highlight their performance in animal models. An overview of our understanding to rationally improve the biological activity fostering the clinical success of silk-based grafts is finally discussed.


Subject(s)
Fibroins , Silk , Animals , Biocompatible Materials , Blood Vessel Prosthesis , Tissue Engineering
6.
Adv Healthc Mater ; 10(19): e2100750, 2021 10.
Article in English | MEDLINE | ID: mdl-34378360

ABSTRACT

Cell-free polymeric tissue-engineered vascular grafts (TEVGs) have shown great promise towards clinical translation; however, their limited bioactivity and remodeling ability challenge this cause. Here, a novel cell-free bioresorbable small diameter silk TEVG system functionalized with decellularized human Wharton's jelly (dWJ) matrix is developed and successfully implanted as interposition grafts into rabbit jugular vein. Implanted TEVGs remain patent for two months and integrate with host tissue, demonstrating neo-tissue formation and constructive remodeling. Mechanistic analysis reveals that dWJ matrix is a reservoir of various immunomodulatory cytokines (Interleukin-8, 6, 10, 4 and tumor necrosis factor alpha (TNF-α)), which aids in upregulating M2 macrophage-associated genes facilitating pro-remodeling behavior. Besides, dWJ treatment to human endothelial cells upregulates the expression of functional genes (cluster of differentiation 31 (CD31), endothelial nitric oxide synthase (eNOS), and vascular endothelial (VE)-cadherin), enables faster cell migration, and elevates nitric oxide (NO) production leading to the in situ development of endothelium. The dWJ functionalized silk TEVGs support increased host cell recruitment than control, including macrophages and vascular cells. It endows superior graft remodeling in terms of a dense medial layer comprising smooth muscle cells and elevates the production of extracellular matrix proteins (collagen and elastin). Altogether, these findings suggest that dWJ functionalization imitates the usefulness of cell seeding and enables graft remodeling.


Subject(s)
Blood Vessel Prosthesis , Wharton Jelly , Animals , Endothelial Cells , Humans , Immunomodulation , Jugular Veins , Rabbits , Silk , Tissue Engineering
7.
Transl Vis Sci Technol ; 9(4): 12, 2020 03.
Article in English | MEDLINE | ID: mdl-32818099

ABSTRACT

Purpose: The purpose of this study was to determine if non-mulberry varieties of silk are suitable for the culture of corneal endothelium (CE). Methods: Aqueous silk fibroin derived from Philosamia ricini (PR), Antheraea assamensis (AA), and Bombyx mori (BM) were cast as approximately 15 µm films with and without pores on which human CE cells were cultured. Tensile strength, elasticity, transmittance in visible range, and degradation properties of the films were characterised. Adhesion of CE to the silk films was quantified using MTT assay in addition to quantifying the number and area of focal adhesions using paxillin. Expression of CE markers was determined at the gene and protein levels using PCR and immunostaining, respectively. Barrier integrity of the cultured cells was measured as permeability to FITC dextran (10 kDa) in the presence or absence of thrombin. Results: The films exhibited robust tensile strength, >95% transmittance and a refractive index comparable to the native cornea. BM degraded significantly faster when compared to PR and AA. A comparison between the three varieties of silk showed that significantly more cells were adhered to PR and AA than to BM. This was also reflected in the expression of stable focal adhesions on PR and AA, thus enabling the formation of intact monolayers of cells on these varieties unlike on BM. Treatment with thrombin significantly increased cellular permeability to dextran. Conclusions: Our data shows that PR and AA varieties sufficiently support the growth and function of CE cells. This could be attributed to the presence of natural cell binding motifs (RGD) in these varieties. Translational Relevance: Development of a suitable carrier for engineering the CE to address a major clinical requirement of healthy donor tissues for transplantation.


Subject(s)
Bombyx , Fibroins , Animals , Endothelium, Corneal , Humans , Silk , Wound Healing
8.
ACS Appl Mater Interfaces ; 12(24): 26955-26965, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32441910

ABSTRACT

Vascular tissue engineering is aimed at developing regenerative vascular grafts to restore tissue function by bypassing or replacing defective arterial segments with tubular biodegradable scaffolds. Scaffolds are often combined with stem or progenitor cells to prevent acute thrombosis and initiate scaffold remodeling. However, there are limitations to cell-based technologies regarding safety and clinical translation. Extracellular vesicles (EVs) are nanosized particles released by most cell types, including stem and progenitor cells, that serve to transmit protein and RNA cargo to target cells throughout the body. EVs have been shown to replicate the therapeutic effect of their parent cells; therefore, EVs derived from stem or progenitor cells may serve as a more translatable, cell-free, therapeutic base for vascular scaffolds. Our study aims to determine if EV incorporation provides a positive effect on graft patency and remodeling in vivo. We first assessed the effect of human adipose-derived mesenchymal stem cell (hADMSC) EVs on vascular cells using in vitro bioassays. We then developed an EV-functionalized vascular graft by vacuum-seeding EVs into porous silk-based tubular scaffolds. These constructs were implanted as aortic interposition grafts in Lewis rats, and their remodeling capacity was compared to that observed for hADMSC-seeded and blank (non-seeded) controls. The EV group demonstrated improved patency (100%) compared to the hADMSC (56%) and blank controls (82%) following eight weeks in vivo. The EV group also produced significantly more elastin (126.46%) and collagen (44.59%) compared to the blank group, while the hADMSC group failed to produce significantly more elastin (57.64%) or collagen (11.21%) compared to the blank group. Qualitative staining of the explanted neo-tissue revealed improved endothelium formation, increased smooth muscle cell infiltration, and reduced macrophage numbers in the EV group compared to the controls, which aids in explaining this group's favorable pre-clinical outcomes.


Subject(s)
Extracellular Vesicles/chemistry , Animals , Cells, Cultured , Exosomes/chemistry , Humans , Mesenchymal Stem Cells/cytology , Rats , Silk , Tissue Engineering/methods , Tissue Scaffolds/chemistry
9.
Acta Biomater ; 105: 146-158, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31958596

ABSTRACT

The success of tissue-engineered vascular graft (TEVG) predominantly relies on the selection of a suitable biomaterial and graft design. Natural biopolymer silk has shown great promise for various tissue-engineering applications. This study is the first to investigate Indian endemic non-mulberry silk (Antheraea assama-AA) - which inherits naturally superior mechanical and biological traits (e.g., RGD motifs) compared to Bombyx mori-BM silk, for TEVG applications. We designed bi-layered biomimetic small diameter AA-BM silk TEVGs adopting a new fabrication methodology. The inner layer showed ideally sized (~40 µm) pores with interconnectivity to allow cellular infiltration, and an outer dense electrospun layer that confers mechanical resilience. Biodegradation of silk TEVGs into amino acids as resorbable byproducts corroborates their in vivo remodeling ability. Following our previous reports, we surgically implanted human adipose tissue-derived stromal vascular fraction (SVF) seeded silk TEVGs in Lewis rats as abdominal aortic interposition grafts for 8 weeks. Adequate suture retention strength (0.45 ± 0.1 N) without any blood seepage post-implantation substantiate the grafts' viability. AA silk-based TEVGs showed superior animal survival and graft patency compared to BM silk TEVGs. Histological analysis revealed neo-tissue formation, host cell infiltration and graft remodeling in terms of extracellular matrix turnover. Altogether, this study demonstrates promising aspects of AA silk TEVGs for vascular tissue engineering applications. STATEMENT OF SIGNIFICANCE: Clinical 'off the shelf' implementation of tissue-engineered vascular grafts (TEVGs) remains a challenge. Achieving optimal blood vessel regeneration requires the use of bioresorbable materials having suitable degradation rates while producing minimal or no toxic byproducts. Host cell recruitment and preventing acute thrombosis are other pre-requisites for successful graft remodeling. In this study, for the first time we explored the use of naturally derived Indian endemic non-mulberry Antheraea assama silk in combination with Bombyx mori silk for TEVG applications by adopting a new biomimetic approach. Our bi-layered silk TEVGs were optimally porous, mechanically resilient and biodegradable. In vivo implantation in rat aorta showed long-term patency and graft remodeling by host cell infiltration and extracellular matrix deposition corroborating their clinical feasibility.


Subject(s)
Absorbable Implants , Blood Vessel Prosthesis Implantation , Silk/chemistry , Tissue Engineering , Adult , Animals , Cell Proliferation , Extracellular Matrix/metabolism , Female , Humans , Rats, Inbred Lew , Tensile Strength , Tissue Scaffolds/chemistry
10.
Mater Sci Eng C Mater Biol Appl ; 95: 440-449, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30573269

ABSTRACT

Fabrication of porous and biologically inspired biomaterials that mimic the formation of microstructural structures of nacre in the form of calcite (CaCO3) and evaluation of the biocompatibility of such organic-inorganic composite scaffold for bone tissue engineering, are focus of this paper. Nacre's self-assembly characteristics are concerned about the development of calcite filled biomineralized scaffold following the nature based biomineralization process and biomimetic applications. The PVP-CMC hydrogel film, comprised of PVP:0.2, CMC:0.8, PEG:1.0, Agar:2.0, Glycerene:1.0 and water:95.0 w/v%; acts as catalyst and template for the nucleation and growth of the inorganic CaCO3 within the scaffold. The PVP-CMC hydrogel (in the dry state) was immersed in ionic solutions (g/100 ml) of Na2CO3 and CaCl2·H2O in different concentrations sets i.e. Set-1: 10.50/14.70; Set-2: 5.25/7.35; Set-3: 4.20/5.88; Set-4: 2.10/2.94; Set-5: 1.05/1.47, Set-6: 0.55/0.55 for 90 min. As a result, "PVP-CMC-CaCO3" hydrogel scaffold was fabricated having bio-inspired structural and functional properties. Cell proliferation and cell viability were examined until 7 days in the presence of "PVP-CMC-CaCO3" scaffolds using permanent cell lines MG63 (human osteosarcoma), L929 (murine fibroblasts) as well as cultures from mouse bone explants (CC-MBE), confirmed that the said hydrogel scaffolds are biocompatible. But, from mechanical strength as well as biocompatibility point of view, scaffolds prepared in Set-1 to 3 ionic solutions were superior. In conclusion, these three calcite filled hydrogel scaffolds are recommended and can be used for osseointegration.


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Line , Cell Survival/physiology , Mice , Microscopy, Electron, Scanning , Osseointegration/physiology , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
11.
ACS Biomater Sci Eng ; 5(2): 933-949, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-33405850

ABSTRACT

Functional impairment of vascular cells is associated with cardiovascular pathologies. Recent literature clearly presents evidence relating cell microenvironment and their function. It is crucial to understand the cell-material interaction while designing a functional tissue engineered vascular graft. Natural silk biopolymer has shown potential for various tissue-engineering applications. In the present work, we aimed to explore the combinatorial effect of variable innate physicochemical properties and topographies of silk films on functional behavior of vascular cells. Silk proteins from different varieties (mulberry Bombyx mori, BM; and non-mulberry Antheraea assama, AA) possess unique inherent amino acid composition that leads to variable surface properties (roughness, wettability, chemistry, and mechanical stiffness). In addition, we engineered the silk film surfaces and printed a microgrooved pattern to induce unidirectional cell orientation mimicking their native form. Patterned silk films induced unidirectional alignment of porcine vascular cells. Regardless of alignment, endothelial cells (ECs) proliferated favorably on AA films; however, it suppressed production of nitric oxide (NO), an endogenous vasodilator. Unidirectional alignment of smooth muscle cells (SMCs) encouraged contractile phenotype as indicated by minimal cell proliferation, increment of quiescent (G0) phase cells, and upregulation of contractile genes. Moderately hydrophilic flat BM films induced cell aggregation and augmented the expression of contractile genes (for SMCs) and endothelial nitric oxide synthase, eNOS (for ECs). Functional studies further confirmed SMCs' alignment improving collagen production, remodeling ability (matrix metalloproteinase, MMP-2 and MMP-9 production) and physical contraction. Altogether, this study confirms vascular cells' functional behavior is crucially regulated by synergistic effect of their alignment and cell-substrate interfacial properties.

12.
Biomaterials ; 187: 1-17, 2018 12.
Article in English | MEDLINE | ID: mdl-30286320

ABSTRACT

Islet transplantation is considered the most promising treatment for type 1 diabetes. However, the clinical success is limited by islet dysfunction in long-term culture. In this study, we have utilized the rapid self-gelation and injectability offered by blending of mulberry silk (Bombyx mori) with non-mulberry (Antheraea assama) silk, resulting in a biomimetic hydrogel. Unlike the previously reported silk gelation techniques, the differences in amino acid sequences of the two silk varieties result in accelerated gelation without requiring any external stimulus. Gelation study and rheological assessment depicts tuneable gelation as a function of protein concentration and blending ratio with minimum gelation time. In vitro biological results reveal that the blended hydrogels provide an ideal 3D matrix for primary rat islets. Also, A. assama fibroin with inherent Arg-Gly-Asp (RGD) shows significant influence on islet viability, insulin secretion and endothelial cell maintenance. Furthermore, utility of these hydrogels demonstrate sustained release of Interleukin-4 (IL-4) and Dexamethasone with effective M2 macrophage polarization while preserving islet physiology. The immuno-informed hydrogel demonstrates local modulation of inflammatory responses in vivo. Altogether, the results exhibit promising attributes of injectable silk hydrogel and the utility of non-mulberry silk fibroin as an alternative biomaterial for islet encapsulation.


Subject(s)
Biomimetic Materials/chemistry , Hydrogels/chemistry , Islets of Langerhans/physiology , Macrophages/drug effects , Moths/chemistry , Silk/chemistry , Animals , Biocompatible Materials , Bombyx/chemistry , Cell Line , Cell Survival , Dexamethasone/administration & dosage , Dexamethasone/chemistry , Dexamethasone/immunology , Fibroins/administration & dosage , Fibroins/chemistry , Fibroins/immunology , Immunomodulation , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/immunology , Insulin Secretion , Interleukin-4/administration & dosage , Interleukin-4/chemistry , Islets of Langerhans/immunology , Macrophages/immunology , Macrophages/physiology , Rats , Rats, Wistar , Silk/administration & dosage , Silk/immunology , Tissue Engineering
13.
Biomed Mater ; 13(4): 045004, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29570096

ABSTRACT

Design and fabrication of a smart bio-based polymeric material with potent biocompatibility and high performance still remain a challenge in the biomedical realm. In this context, a potential smart suture was fabricated from starch modified hyperbranched polyurethane (HPU) nanocomposites with different weight percentages of reduced carbon dots for the first time. The desired mechanical (tensile strength: 32.14 MPa, elongation at break: 1576% and toughness 439.28 MJ m-3) and thermal (286 °C) attributes of the suture were achieved with 2 wt% of reduced carbon dots in an HPU matrix. The non-contact self-tightening behavior was observed just within 15 s at body temperature of 37 °C ± 1 °C with notable shape fixity (99.6%) and shape recovery (99.7%) effects. The nanocomposites displayed in vitro biodegradability and hemocompatibility. Low lactate dehydrogenase activity and minimal red blood cell lysis indicated the anti-thrombogenicity and anti-hemolytic properties of the nanocomposites. The suitability of the fabricated nanocomposites as a smart biomaterial was supported by the inherent biocompatibility as observed by the growth and proliferation of smooth muscle cells and endothelial cells. Furthermore, they exhibited minimal immunogenic response (TNF α release). Thus, the study paves the way to biodegradable HPU nanocomposites as advanced non-contact triggered rapid self-tightening surgical sutures for biomedical applications.


Subject(s)
Biocompatible Materials/chemistry , Carbon/chemistry , Nanocomposites/chemistry , Polyurethanes/chemistry , Sutures , Absorbable Implants , Animals , Aorta/drug effects , Cell Proliferation , Hemorheology , Immune System/drug effects , L-Lactate Dehydrogenase/metabolism , Materials Testing , Polymers , Stress, Mechanical , Swine , Temperature , Tensile Strength , Tumor Necrosis Factor-alpha/metabolism
14.
Inorg Chem ; 57(7): 3615-3625, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-28841011

ABSTRACT

Two new irregular hexagons (6 and 7) were synthesized from a pyrazine motif containing an organometallic acceptor clip [bearing platinum(II) centers] and different neutral donor ligands (4,4'-bipyridine or pyrazine) using a coordination-driven self-assembly protocol. The two-dimensional supramolecules were characterized by multinuclear NMR, mass spectrometry, and elemental analyses. Additionally, one of the macrocycles (6) was characterized by single-crystal X-ray analyses. Macrocycles are unique examples of [2 + 2] self-assembled ensembles that are hexagonal but irregular in shape. These hexagon frameworks require the assembly of only four tectons/subunits. The cytotoxicity of platinum(II)-based macrocycles was studied using various cell lines such as A549 (human lung carcinoma), KB (human oral cancer), MCF7 (human breast cancer), and HaCaT (human skin keratinocyte) cell lines, and the results were compared with those of cisplatin. The smaller macrocycle (7) exhibited a higher cytotoxic effect against all cell types, and its sensitivity was found to be comparable with that of cisplatin for A549 and MCF7 cells. Cell cycle analysis and live propidium iodide staining suggest that the macrocycles 6 and 7 induced a loss of membrane integrity that ultimately might lead to necrotic cell death.


Subject(s)
Coordination Complexes/pharmacology , Macrocyclic Compounds/pharmacology , Organoplatinum Compounds/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Membrane/drug effects , Cisplatin/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Ligands , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Molecular Structure , Necrosis/chemically induced , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/chemistry
15.
ACS Appl Mater Interfaces ; 8(45): 30797-30810, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27783501

ABSTRACT

Composite biomaterials as artificial bone graft materials are pushing the present frontiers of bioengineering. In this study, a biomimetic, osteoconductive tricomposite scaffold made of hydroxyapatite (HA) embedded in non-mulberry Antheraea assama (A. assama) silk fibroin fibers and its fibroin solution is explored for its osteogenic potential. Scaffolds were physico-chemically characterized for morphology, porosity, secondary structure conformation, water retention ability, biodegradability, and mechanical property. The results revealed a ∼5-fold increase in scaffold compressive modulus on addition of HA and silk fibers to liquid silk as compared to pure silk scaffolds while maintaining high scaffold porosity (∼90%) with slower degradation rates. X-ray diffraction (XRD) results confirmed deposition of HA crystals on composite scaffolds. Furthermore, the crystallite size of HA within scaffolds was strongly regulated by the intrinsic physical cues of silk fibroin. Fourier transform infrared (FTIR) spectroscopy studies indicated strong interactions between HA and silk fibroin. The fabricated tricomposite scaffolds supported enhanced cellular viability and function (ALP activity) for both MG63 osteosarcoma and human bone marrow stem cells (hBMSCs) as compared to pure silk scaffolds without fiber or HA addition. In addition, higher expression of osteogenic gene markers such as collagen I (Col-I), osteocalcin (OCN), osteopontin (OPN), and bone sialoprotein (BSP) further substantiated the applicability of HA composite silk scaffolds for bone related applications. Immunostaining studies confirmed localization of Col-I and BSP and were in agreement with real-time gene expression results. These findings demonstrate the osteogenic potential of developed biodegradable tricomposite scaffolds with the added advantage of the affordability of its components as bone graft substitute materials.


Subject(s)
Silk/chemistry , Biocompatible Materials , Biomimetics , Fibroins , Humans , Porosity , Tissue Engineering , Tissue Scaffolds
16.
Biofabrication ; 8(4): 045013, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27788125

ABSTRACT

Development of a bio-based smart implantable material with multifaceted attributes of high performance, potent biocompatibility and inherent antibacterial property, particularly against drug resistant bacteria, is a challenging task in biomedical domain. Addressing these aspects at the bio-nano interface, we report the in situ fabrication of starch modified hyperbranched polyurethane (HPU) nanocomposites by incorporating different weight percentages of carbon dot-silver nanohybrid during polymerization process. This nanohybrid and its individual nanomaterials (Ag and CD) were prepared by facile hydrothermal approaches and characterized by various instrumental techniques. The structural insight of the nanohybrid, as well as its nanocomposites was evaluated by TEM, XRD, FTIR, EDX and thermal studies. The significant improvement in the performance in terms of tensile strength (1.7 fold), toughness (1.5 fold) and thermal stability (20 °C) of the pristine HPU was observed by the formation of nanocomposite with 5 wt.% of nanohybrid. They also showed notable shape recovery (99.6%) and nearly complete self-expansion (>99%) just within 20s at (37 ± 1) °C. Biological assessment established in vitro cytocompatibility of the HPU nanocomposites. The fabricated nanocomposites not only assisted the growth and proliferation of smooth muscle cells and endothelial cells that exhibited reduced platelet adhesion but also displayed in vitro hemocompatibility of mammalian RBCs. Significantly, the antibacterial potency of the nanocomposites against Escherichia coli MTCC 40 and Staphylococcus aureus MTCC 3160 bacterial strains vouched for their application to countercheck bacterial growth, often responsible for biofilm formation. Thus, the present work forwards the nanocomposites as potential tough infection-resistant rapid self-expandable stents for possible endoscopic surgeries.


Subject(s)
Carbon/chemistry , Nanocomposites/chemistry , Polyurethanes/chemistry , Silver/chemistry , Stents , Animals , Aorta/cytology , Aorta/metabolism , Blood Platelets/cytology , Cell Adhesion/drug effects , Cell Survival/drug effects , Cells, Cultured , Escherichia coli/drug effects , Hemolysis/drug effects , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Nanocomposites/toxicity , Staphylococcus aureus/drug effects , Swine , Temperature , Tensile Strength
17.
ACS Appl Mater Interfaces ; 8(25): 15874-88, 2016 Jun 29.
Article in English | MEDLINE | ID: mdl-27269821

ABSTRACT

Autologous graft replacement as a strategy to treat diseased peripheral small diameter (≤6 mm) blood vessel is often challenged by prior vein harvesting. To address this issue, we fabricated native-tissue mimicking multilayered small diameter vascular graft (SDVG) using mulberry (Bombyx mori) and Indian endemic non-mulberry (Antheraea assama and Philosamia ricini) silk. Patterned silk films were fabricated on microgrooved PDMS mold, casted by soft lithography. The biodegradable patterned film templates with aligned cell sheets were rolled onto an inert mandrel to mimic vascular conduit. The hemocompatible and mechanically strong non-mulberry films with RGD motif supported ∼1.2 folds greater proliferation of vascular cells with aligned anchorage. Elicitation of minimal immune response on subcutaneous implantation of the films in mice was complemented by ∼45% lower TNF α secretion by in vitro macrophage culture post 7 days. Pattern-induced alignment favored the functional contractile phenotype of smooth muscle cells (SMCs), expressing the signature markers-calponin, α-smooth muscle actin (α-SMA), and smooth muscle myosin heavy chain (SM-MHC). Endothelial cells (ECs) exhibited a typical punctuated pattern of von Willebrand factor (vWF). Deposition of collagen and elastin by the SMCs substantiated the aptness of the graft with desired biomechanical attributes. Furthermore, the burst strength of the fabricated conduit was in the range of ∼915-1260 mmHg, a prerequisite to withstand physiological pressure. This novel fabrication approach may eliminate the need of maturation in a pulsatile bioreactor for obtaining functional cellular phenotype. This work is thereby an attestation to the immense prospects of exploring non-mulberry silk for bioengineering a multilayered vascular conduit similar to a native vessel in "form and function", befitting for in vivo transplantation.


Subject(s)
Implants, Experimental , Myocytes, Smooth Muscle/drug effects , Silk/pharmacology , Tissue Engineering/methods , Tissue Scaffolds/standards , Animals , Biocompatible Materials/pharmacology , Biocompatible Materials/standards , Collagen/metabolism , Mice , Morus/metabolism , Moths/chemistry , Myocytes, Smooth Muscle/cytology , Silk/chemistry , Tissue Scaffolds/chemistry
18.
Biotechnol Adv ; 34(5): 845-858, 2016.
Article in English | MEDLINE | ID: mdl-27165254

ABSTRACT

Silk based biomaterials have not only carved a unique niche in the domain of regenerative medicine but new avenues are also being explored for lab-on-a-chip applications. It is pertinent to note that biospinning of silk represents nature's signature microfluidic-maneuver. Elucidation of non-Newtonian flow of silk in the glands of spiders and silkworms has inspired researchers to fabricate devices for continuous extrusion and concentration of silk. Microfluidic channel networks within porous silk scaffolds ensure optimal nutrient and oxygen supply apart from serving as precursors for vascularization in tissue engineering applications. On the other hand, unique topographical features and surface wettability of natural silk fibers have inspired development of a number of simple and cost-effective devices for applications like blood typing and chemical sensing. This review mirrors the recent progress and challenges in the domain of silk-microfluidics for prospective avant-garde applications in the realm of biotechnology.


Subject(s)
Biotechnology , Microfluidics , Silk , Animals , Spiders
SELECTION OF CITATIONS
SEARCH DETAIL
...